An Experimental Investigation of the Flow Through an Axial-Flow Pump

Author:

Zierke W. C.1,Straka W. A.1,Taylor P. D.1

Affiliation:

1. Applied Research Laboratory, The Pennsylvania State University, State College, PA 16804

Abstract

The high Reynolds number pump (HIREP) facility at ARL Penn State has been used to perform a low-speed, large-scale experiment of the incompressible flow of water through a two-blade-row turbomachine. The objectives of this experiment were to provide a database for comparison with three-dimensional, turbulent flow computations, to evaluate engineering models, and to improve our physical understanding of many of the phenomena involved in this complex flow field. This summary paper briefly describes the experimental facility, as well as the experimental techniques—such as flow visualization, static-pressure measurements, laser Doppler velocimetry, and both slow- and fast-response pressure probes. Then, proceeding from the inlet to the exit of the pump, the paper presents highlights of experimental measurements and data analysis, giving examples of measured physical phenomena such as endwall boundary layers, separation regions, wakes, and secondary vortical structures. In conclusion, this paper provides a synopsis of a well-controlled, larger scope experiment that should prove helpful to those who wish to use the database.

Publisher

ASME International

Subject

Mechanical Engineering

Reference2 articles.

1. Lauchle, G. C., Billet, M. L., and Deutsch, S., 1989, “High-Reynolds Number Liquid Flow Measurements,” Frontiers in Experimental Fluid Mechanics, Gad-el-Hak, ed., Springer-Verlag, Berlin, Heidelberg, pp. 95–157.

2. Zierke, W. C., Straka, W. A., and Taylor, P. D., 1993, “The High Reynolds Number Flow through an Axial-Flow Pump,” The Pennsylvania State University, Applied Research Laboratory Technical Report No. TR 93-12.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3