Experimental Investigation on the Time–Space Evolution of a Laminar Separation Bubble by Proper Orthogonal Decomposition and Dynamic Mode Decomposition

Author:

Lengani D.1,Simoni D.2,Ubaldi M.2,Zunino P.2,Bertini F.3

Affiliation:

1. DIME—Universitá di Genova, Via Montallegro 1, Genova I-16145, Italy e-mail:

2. DIME—Universitá di Genova, Via Montallegro 1, Genova I-16145, Italy

3. GE AvioAero S.r.l., Via I Maggio, Rivalta (TO) 99 I-10040, Italy

Abstract

A time-resolved particle image velocimetry (TR-PIV) system has been employed to investigate a laminar separation bubble which is induced by a strong adverse pressure gradient typical of ultrahigh-lift low-pressure turbine (LPT) blades. Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are described and applied within this paper. These techniques allow reducing the degrees-of-freedom of complex systems producing a low-order model ranked by the energy content (POD) or by the modal contribution to the dynamics of the system itself (DMD), useful to highlight the dominant dynamics. The time–space evolution of the laminar separation bubble is characterized by rollup vortices shed in the surrounding of the bubble maximum displacement as a consequence of the Kelvin–Helmholtz (KH) instability process as well as by a low-frequency motion of the separated shear layer. The decomposition techniques proposed allow the identification of these coherent structures and the characterization of their modal properties (e.g., temporal frequency, spatial wavelength, and growth rate). The POD separates the different dynamics that induce velocity fluctuations at different frequencies and wavelength looking at their contribution to the overall kinetic energy. The DMD provides complementary information: the unstable spatial frequencies are identified with their growth (or decay) rates. DMD modes associated with the Kelvin–Helmholtz instability and the corresponding vortex shedding phenomenon clearly dominate the unsteady behavior of the laminar separation bubble, being characterized by the highest growth rate. Modes with longer wavelength describe the low-frequency motion of the laminar separation bubble and are neutrally stable. Results reported in this paper prove the ability of the present methods in extracting the dominant dynamics from a large dataset, providing robust and rapid tools for the in depth analysis of transition and separation processes.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of Transient Regime in Laminar Separation Bubble Formation;Lecture Notes in Mechanical Engineering;2023

2. Data-driven Online Modeling and Parameter Estimation of Highway Traffic Flow;2022 China Automation Congress (CAC);2022-11-25

3. A hybrid reduced-order model combing deep learning for unsteady flow;Physics of Fluids;2022-09

4. Unsteady two-phase region evolution of SCO2 centrifugal compressor;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-08-02

5. Characteristics of boundary-layer transition driven by diverse streamwise vortices;Physics of Fluids;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3