Comprehensive Experimental Investigation of Hole Cleaning Performance in Horizontal Wells Including the Effects of Drill String Eccentricity, Pipe Rotation, and Cuttings Size

Author:

Abbas Ahmed K.1,Alsaba Mortadha T.2,Al Dushaishi Mohammed F.3

Affiliation:

1. Missan Oil Training Institute (MOTI), Amarah, Missan 62001, Iraq

2. Australian College of Kuwait, Safat 13015, Kuwait

3. Oklahoma State University, Stillwater, OK 74078

Abstract

Abstract Extended reach drilling (ERD) wells with a horizontal and highly deviated section are widely applied in the oil and gas industry because they provide higher drainage area than vertical wells and hence increase the productivity or injectivity of the well. Among many issues encountered in a complex well trajectory, poor hole cleaning is the most common problem, which occurs mainly in the deviated and horizontal section of oil and gas wells. There are significant parameters that have a serious impact on hole cleaning performance in high-angle and horizontal sections. These include flowrate, rheology, and density of the drilling fluid, drill string eccentricity, pipe rotation, and cuttings size. It has been recognized that the action of most of these parameters to transport drilled cuttings is constantly a point of controversy among oilfield engineers. In the present study, extensive experiments were conducted in an advanced purpose-built flow rig to identify the main parameters affecting on circulate the cuttings out of the test section in a horizontal position. The flow-loop simulator has been designed to allow easy variation of operational parameters in terms of flowrate, mud density, drill string eccentricity, pipe rotation, and cuttings size. In addition, the study covers the impacts of laminar, transition, and turbulent flow regimes. The goal of such variation in the operational conditions is to simulate real-field situations. The results have shown that drill string rotation and flowrate were the operational parameters with the highest positive influence on the cuttings transports process. In contrast, drill pipe eccentricity has a negative influence on cuttings removal efficiency. The cuttings transportation performance is further improved by pipe rotation at different levels of eccentricity, especially at fully eccentric annuli. It was also shown that larger cuttings appeared to be easier to remove in a horizontal annulus than smaller ones. The experimental results would provide a more in-depth understanding of the relationship between drilling operation parameters and hole cleaning efficiency in ERD operations. This will help the drilling teams to realize what action is better to take for efficient cutting transportation.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3