Evaluating the Impact of Free-Stream Turbulence on Convective Cooling of Overhead Conductors Using Large Eddy Simulations

Author:

Abdelhady Mohamed1,Wood David H.2

Affiliation:

1. Laboratory for Turbulence Research in Aerodynamics and Flow Control (LTRAC), Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2 L 1Y6, Canada e-mail:

2. Professor, Schulich Chair in Renewable Energy, Laboratory for Turbulence Research in Aerodynamics and Flow Control (LTRAC), Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2 L 1Y6, Canada e-mail:

Abstract

The international trend of using renewable energy sources for generating electricity is increasing, partly through harvesting energy from wind turbines. Increasing electric power transmission efficiency is achievable through using real-time weather data for power line rating, known as real-time thermal rating (RTTR), instead of using the worst case scenario weather data, known as static rating. RTTR is particularly important for wind turbine connections to the grid, as wind power output and overhead conductor rating both increase with increasing wind speed, which should significantly increase real-time rated conductor from that of statically rated. Part of the real-time weather data is the effect of free-stream turbulence, which is not considered by the commonly used overhead conductor codes, Institute of Electrical and Electronics Engineers (IEEE) 738 and International Council on Large Electric Systems (CIGRÉ) 207. This study aims to assess the effect free-stream turbulence on IEEE 738 and CIGRÉ 207 forced cooling term. The study uses large eddy simulation (LES) in the ANSYS fluent software. The analysis is done for low wind speed, corresponding to Reynolds number of 3000. The primary goal is to calculate Nusselt number for cylindrical conductors with free-stream turbulence. Calculations showed an increase in convective heat transfer from the low turbulence value by ∼30% at turbulence intensity of 21% and length scale to diameter ratio of 0.4; an increase of ∼19% at turbulence intensity of 8% and length scale to diameter ratio of 0.4; and an increase of ∼15% at turbulence intensity of 6% and length scale to diameter ratio of 0.6.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3