Demonstration of Fluidic Throat Skewing for Thrust Vectoring in Structurally Fixed Nozzles

Author:

Yagle P. J.1,Miller D. N.1,Ginn K. B.1,Hamstra J. W.1

Affiliation:

1. Lockheed Martin Aeronautics Company, P.O. Box 748, MZ 9333, Fort Worth, TX 76101

Abstract

The experimental demonstration of a fluidic, multiaxis thrust vectoring (MATV) scheme is presented for a structurally fixed, afterburning nozzle referred to as the conformal fluidic nozzle (CFN). This concept for jet flow control features symmetric injection around the nozzle throat to provide throttling for jet area control, and asymmetric injection to subsonically skew the sonic plane for jet vectoring. The conceptual development of the CFN was presented in a companion paper (Miller et al. [1]). In that study, critical design variables were shown to be the flap length and expansion area ratio of the nozzle, and the location, angle, and distribution of injected flow. Measures of merit were vectoring capability, gross thrust coefficient, and discharge coefficient. A demonstration of MATV was conducted on a 20 percent scale CFN test article across a range of nozzle pressure ratios (NPR), injector flow rates, and flow distributions. Both yaw and pitch vector angles of greater than 8 deg were obtained at NPR of 5.5. Yaw vector angles greater than 10 deg were achieved at lower NPR. Values of thrust coefficient for the CFN generally exceeded published measurements of shock-based vectoring methods. In terms of vectoring effectiveness (ratio of vector angle to percent injected flow), fluidic throat skewing was found to be comparable to shock-based vectoring methods.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3