Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine

Author:

Schuepbach P.1,Abhari R. S.1,Rose M. G.2,Germain T.3,Raab I.3,Gier J.3

Affiliation:

1. Department of Mechanical and Process Engineering, LEC, Laboratory of Energy Conversion, ETH Zurich, Zurich CH-8092, Switzerland

2. Institute of Aeronautical Propulsion, University of Stuttgart, 70569 Stuttgart, Germany

3. MTU Aero Engines GmbH, Dachauer Strasse 665, 80995 München, Germany

Abstract

In high-pressure turbines, a small amount of air is ejected at the hub rim seal to cool and prevent the ingestion of hot gases into the cavity between the stator and the disk. This paper presents an experimental study of the flow mechanisms that are associated with injection through the hub rim seal at the rotor inlet. Two different injection rates are investigated: nominal sucking of −0.14% of the main massflow and nominal blowing of 0.9%. This investigation is executed on a one-and-1/2-stage axial turbine. The results shown here come from unsteady and steady measurements, which have been acquired upstream and downstream of the rotor. The paper gives a detailed analysis of the changing secondary flow field, as well as unsteady interactions associated with the injection. The injection of fluid causes a very different and generally more unsteady flow field at the rotor exit near the hub. The injection causes the turbine efficiency to deteriorate by about 0.6%.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3