Affiliation:
1. Department of Mechanical Engineering, Heat Pipe Laboratory (LABTUCAL), Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
Abstract
High temperature thermosyphons are devices designed to operate at temperatures above 400°C. They can be applied in many industrial applications, including heat recovery from high temperature air fluxes. After a short literature review, which shows a deficiency of models for liquid metal thermosyphons, an analytical model, developed to predict the temperature distribution and the overall thermal resistance, is shown. In this model, the thermosyphon is divided into seven regions: three regions for the condensed liquid, including the condenser, adiabatic region, and evaporator; one region for vapor; one for the liquid pool; one for the noncondensable gases; and another for the tube wall. The condensation phenomenon is modeled according to the Nusselt theory for condensation in vertical walls. Numerical methods are used to solve the resulting equations and to determine the temperature distribution in the tube wall. Ideal gas law is applied for the noncondensable gases inside the thermosyphon, while the evaporator and condenser heat transfer coefficients are obtained from literature correlations. Experimental tests are conducted for thermosyphon with mercury as working fluid, designed and constructed in the laboratory. The results for two thermosyphons with different geometry configurations are tested: one made of a finned tube in the condenser region and another of a smooth tube. The finned tube presents lower wall temperature levels when compared with the smooth tube. The experimental data are compared with the proposed model for two different liquid pool heat transfer coefficients. It is observed that the comparison between the experimental data and theoretical temperature profiles is good for the condenser region. For the evaporator, where two distinct regions are observed (liquid film and pool), the comparison is not so good, independent of the heat transfer coefficient used. In a general sense, the model has proved to be a useful tool for the design of liquid metal thermosyphons.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference17 articles.
1. Modeling of High Temperature Thermosyphons;Vieira da Cunha
2. High Temperature Heat Pipes for Terrestrial Applications;Ranken
3. Heat Pipes for High Temperature Industrial Waste Heat Recovery;Merrigan
4. Study on Life of Sodium Heat Pipe;Yamamoto;J. Heat Recovery Syst.
5. Experimental Study of Mercury Heat Pipe;Yamamoto;Exp. Therm. Fluid Sci.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献