Creep Rupture Ductility of Creep Strength Enhanced Ferritic Steels

Author:

Kimura Kazuhiro1,Sawada Kota1,Kushima Hideaki2

Affiliation:

1. Materials Reliability Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

2. Materials Information Station, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

Abstract

Creep rupture strength and ductility of creep strength enhanced ferritic steels of Grades 23, 91, 92, and 122 was investigated with particular emphasis on remarkable drop in the long-term. Large difference in creep rupture strength and ductility was observed on three heats of Grade 23 steels. Remarkable drop of creep rupture strength in the long-term of T91 was comparable to those of Grades 92 and 122. Remarkable drop in creep rupture ductility in a stress regime below 50% of 0.2% offset yield stress was observed on Grade T23 steel, however, that of Grade P23 steel did not indicate any degradation of creep rupture ductility. Higher creep rupture ductility of Grade P23 steel was considered to be caused by its lower creep strength than that of T23 steels. Creep rupture ductility of Grades 92 and 122 steels indicated rapid and drastic decrease with decrease in stress at 50% of 0.2% offset yield stress. Stress dependence of creep rupture ductility of Grades 92 and 122 steels was well described by a ratio of stress to 0.2% offset yield stress, regardless of temperature. On the other hand, large drop in creep rupture ductility of Grade 91 steel was observed only in the very low-stress regime at 650 °C. Alloying elements including impurities and changes in precipitates may influence on creep rupture ductility, however, remarkable drop in ductility of the steels cannot be explained by chemical composition and precipitates. High ductility in the high-stress regime above 50% of 0.2% offset yield stress should be provided by easy plastic deformation, and it has been concluded that a remarkable drop in ductility in the low-stress regime is derived from a concentration of creep deformation into a tiny recovered region formed at the vicinity of grain boundary.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3