Critical Tolerance Oriented Process Planning in Sheet Metal Bending

Author:

Shpitalni M.1,Radin B.1

Affiliation:

1. Laboratory for Computer Graphics and CAD Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

Abstract

Although bending is one of the final processes in sheet metal part manufacture, it is relatively inaccurate compared to the other components of sheet metal processing. Critical tolerances at several locations on the sheet metal part impose limitations on bending operations and sequences. The lack of success up to now in embedding accuracy in process planning for sheet metal products has resulted mainly from the fact that tolerance analysis usually requires simulating the manufacturing process. This paper discusses the issue of automatic determination of the bending sequence in sheet metal products subject to critical tolerance constraints. It proposes conditions for identifying cases where the problem of determining the bending order which results in the best accuracy at specific locations is, in fact, a topological problem. Two explicit rules for achieving the best accuracy in such cases are formulated and then demonstrated by using these rules to construct a precedence graph.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Bending Sequence Planning Algorithm Based on Multiple-Constraint Model;Advanced Materials Research;2014-10

2. A Predictive Model for Tolerance Verification of Bent Sheet Metal Parts;Key Engineering Materials;2011-03

3. Review: geometric and dimensional tolerance modeling for sheet metal forming and integration with CAPP;The International Journal of Advanced Manufacturing Technology;2010-04-25

4. Tolerance transfer in sheet metal forming;International Journal of Production Research;2007-07-15

5. Computer aided process planning for sheet metal bending: A state of the art;Computers in Industry;2005-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3