Affiliation:
1. Center for Advanced Turbomachinery and Energy Research (CATER), University of Central Florida, Orlando, FL 32816
2. 8 Rivers Capital, LLC, 406 Blackwell Street, Durham, NC 27701
Abstract
Abstract
The direct-fired supercritical CO2 (sCO2) cycles promise high efficiency and reduced emissions while enabling complete carbon capture. However, there is a severe lack of fundamental combustion kinetics knowledge required for the development and operation of these cycles, which operate at high pressures and with high CO2 dilution. Experiments at these conditions are very challenging and costly. In this study, a shock tube was used to investigate the auto-ignition tendencies of several mixtures under high carbon dioxide dilution and high fuel loading. Individual mixtures of oxy-syngas and oxy-methane fuels were added to CO2 bath gas environments and ignition delay time data were recorded. Reflected shock pressures neared 100 atm, above the critical pressure of carbon dioxide into the supercritical regime. In total, five mixtures were investigated with a pressure range of 70–100 atm and a temperature range of 1050–1350 K. Measured ignition delay times of all mixtures were compared with two leading chemical kinetic mechanisms for their predictive accuracy. The mixtures included four oxy-syngas and one oxy-methane compositions. The literature mechanisms tended to show good agreement with the data for the methane mixture, while these models were not able to accurately capture all behavior for syngas mixtures tested in this study. For this reason, there is a need to further investigate the discrepancies. To the best of our knowledge, we report the first ignition data for the selected mixtures at these conditions. Current work also highlights the need for further work at high pressures to fully understand the chemical kinetic behavior of these mixtures to enable the sCO2 power cycle development.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference42 articles.
1. The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions,2014
2. Development of a Global Mechanism for Oxy-Methane Combustion in a CO2 Environment,2018
3. Molecular Dynamics Study of Combustion Reactions in a Supercritical Environment—Part 1: Carbon Dioxide and Water Force Field Parameters Refitting and Critical Isotherms of Binary Mixtures;Energy Fuels,2016
4. Technology Needs for Fossil Fuel Supercritical CO2 Power Cycles,2014
5. Technical and Economic Evaluation of Supercritical Oxy-Combustion for Power Generation,2014
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献