Abstract
By the new millennia gas turbine technology standards the size of the first gas turbines of Von Ohain and Whittle would be considered small. Since those first pioneer achievements the sizes of gas turbines have diverged to unbelievable extremes. Large aircraft turbofans delivering the equivalent of 150 megawatts, and research micro engines designed for 20 watts. Microturbine generator sets rated from 2 to 200kW are penetrating the market to satisfy a rapid expansion use of electronic equipment. Tiny turbojets the size of a coca cola can are being flown in model aircraft applications. Shirt button sized gas turbines are now being researched intended to develop output powers below 0.5kW at rotational speeds in excess of 200 Krpm, where it is discussed that parasitic frictional drag and component heat transfer effects can significantly impact cycle performance. The demarcation zone between small and large gas turbines arbitrarily chosen in this treatise is rotational speeds of the order 100 Krpm, and above. This resurgence of impetus in the small gas turbine, beyond that witnessed some forty years ago for potential automobile applications, fostered this timely review of the small gas turbine, and a re-address of the question, what are the effects of size and clearances gaps on the performances of small gas turbines?. The possible resolution of this question lies in autopsy of the many small gas turbine component design constraints, aided by lessons learned in small engine performance development, which are the major topics of this paper.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献