Influence of Sealing Air Mass Flow on the Velocity Distribution In and Inside the Rim Seal of the Upstream Cavity of a 1.5-Stage Turbine

Author:

Bohn Dieter E.1,Decker Achim1,Ma Hongwei1,Wolff Michael1

Affiliation:

1. Aachen University, Aachen, Germany

Abstract

The phenomenon of hot gas ingestion at the rim seal section of turbines has been investigated for the front cavity and inside the sealing gap of an 1.5-stage turbine. This paper presents velocity distributions in and inside the rim seal. The experiments were performed using an unsteady 2D Laser Doppler Velocimetry system with a high local and time-based resolution. The hot gas ingestion has been examined for different parameters such as the non-dimensional seal flow rate and includes measurements at 17 circumferential positions with each 5 axial positions at dimensionless radii of 0.985 and 0.952. It is shown that the flow field inside the gap is influenced by the rotor blades as well as by secondary phenomena originating from the guide vanes. The location of hot gas ingestion is moving with the rotor blades and its strength is depending on the amount of seal flow rate. Unsteady interactions between rotor and stator blades have been investigated.

Publisher

ASMEDC

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3