Exo-Skeletal Engine: Novel Engine Concept

Author:

Chamis Christos C.1,Blankson Isaiah M.1

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH

Abstract

The Exo-Skeletal Engine concept represents a new radical engine technology with the potential for a substantial revolution in engine design. It is an all composite drum rotor engine in which conventional heavy shafts and discs are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Thus the rotating blades are in compression rather than in tension. The resulting open channel at the engine centerline has immense potential for jet noise reduction, and can also accommodate an inner combined-cycle thruster such as a ramjet. The Exo-Skeletal Engine is described in some detail with respect to geometry, components and potential benefits. Initial evaluation, results for drum rotors, bearings and weights are summarized. Component configuration, assembly plan and potential fabrication processes are also identified. A finite element model of the assembled engine and its major components are described. Preliminary results obtained thus far show at least 30 percent reduction of engine weight and about 10 db noise reduction, compared to a baseline conventional high bypass-ratio engine. Potential benefits in all aspects of engine technology are identified and tabulated. Quantitative assessments of potential benefits are in progress.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization Method of Composite Blade Lay-up Considering Bent-Twist Coupling Effect;Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University;2018-12

2. Turbines;Propulsion and Power;2018

3. Analytic Rayleigh pressure loss model for high-swirl combustion in a rotating combustion chamber;CEAS Aeronautical Journal;2015-10-05

4. A Novel Gas Generator Concept for Jet Engines Using a Rotating Combustion Chamber;Journal of Turbomachinery;2015-07-01

5. Durability and Damage Tolerance Evaluation of a Composite Rotor for Advanced Engine Applications;46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference;2005-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3