Affiliation:
1. Texas A&M University, College Station, TX
Abstract
The effect of rotation on smooth narrow rectangular channels and narrow rectangular channels with pin-fins is investigated in this study. Pin-fins are commonly used in the narrow sections within the trailing edge of the turbine blade; the pin-fins act as turbulators to enhance internal cooling while providing structural support in this narrow section of the blade. The rectangular channel is oriented at 150° with respect to the plane of rotation, and the focus of the study involves narrow channels with aspect ratios of 4:1 and 8:1. The enhancement due to both conducting (copper) pin-fins and non-conducting (plexi-glass) pins is investigated. Due to the varying aspect ratio of the channel, the height-to-diameter ratio (hp/Dp) of the pins varies from two, for an aspect ratio of 4:1, to unity, for an aspect ratio of 8:1. A staggered array of pins with uniform streamwise and spanwise spacing (xp/Dp = sp/Dp = 2.0) is studied. With this array, 42 pin-fins are used, giving a projected surface density of 3.5 pins/in2 (0.543 pins/cm2), for the leading or trailing surfaces. The range of flow parameters include Reynolds number (ReDh = 5000–20000), rotation number (Ro = 0.0–0.302), and inlet coolant-to-wall density ratio (Δρ/ρ = 0.12). Heat transfer in a stationary pin-fin channel can be enhanced up to 3.8 times that of a smooth channel. Rotation enhances the heat transferred from the pin-fin channels 1.5 times that of the stationary pin-fin channels. Overall, rotation enhances the heat transfer from all surfaces in both the smooth and pin-fin channels. Finally, as the rotation number increases, spanwise variation increases in all channels.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献