Three-Dimensional Conjugate Heat Transfer Simulation of an Internally-Cooled Gas Turbine Vane

Author:

York William D.1,Leylek James H.1

Affiliation:

1. Clemson University, Clemson, SC

Abstract

A conjugate numerical methodology was employed to predict the metal temperature of a three-dimensional gas turbine vane at two different engine-realistic operating conditions. The vane was cooled internally by air flowing through ten round, radially-oriented channels. The conjugate heat transfer approach allows the simultaneous solution of the external flow, internal convection, and conduction within the metal vane, eliminating the need for multiple, decoupled solutions, which are time-consuming and inherently less accurate when combined. Boundary conditions were specified only for the inlet and exit of the vane passage and the coolant channels, while the solid and fluid zones were coupled by energy conservation at the interfaces, a condition that was maintained throughout the iterative solution process. Validation of the methodology was accomplished through the comparison of the predicted aerodynamic loading curves and the midspan temperature distribution on the vane external surface with data from a linear cascade experiment in the literature. The superblock, unstructured numerical grid consisted of nearly seven million finite-volumes to allow accurate resolution of flowfield features and temperature gradients within the metal. Two models for turbulence closure were used for comparison: the standard k-ε model and a realizable version of the k-ε model. The predictions with the realizable k-ε model exhibited the best agreement with the experimental data, with maximum differences in normalized temperature of less than ten percent in each case. The present study shows that the conjugate heat transfer simulation is a viable tool in gas turbine design, and it serves as a platform on which to base future work with more complex geometries and cooling schemes.

Publisher

ASMEDC

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3