A Theoretical FE-Based Model Developed to Predict the Relative Contribution of Convective and Diffusive Transport Mechanisms for the Maintenance of Local Equilibria Within Cortical Bone

Author:

Tate Melissa L. Knothe1,Niederer Peter1

Affiliation:

1. University and Swiss Federal Institute of Technology Zurich

Abstract

Abstract Whereas diffusion has been shown to be the major contributing mechanism for mass transfer in the extravascular spaces of organs and soft tissues, it is unlikely that diffusion alone can account for sufficient molecular transport in the porous yet relatively impermeable tissue of cortical bone. An alternate mechanism for such mass transfer is intrinsic to the functional role of cortical bone in transferring loads within the musculoskeletal system. Namely, it has been proposed that mechanical loading causes minute deformations within the poroelastic tissue of cortical bone, resulting in extravascular fluid displacements. This biophysical phenomenon is referred to as load-induced interstitial or extravascular fluid flow. In order to establish the role of convective transport mechanisms for maintenance of healthy bone metabolism and to investigate the potential role of convective transport (via load-induced fluid flow) for processes associated with functional adaptation, we developed a theoretical osteon model based on finite element methods. A study designed to simulate short term transport (circa 1 second or half a gait cycle) in a single osteon corroborated the hypothesis that diffusion alone is insufficient for molecular transport between the blood supply and remotely lying bone cells. Simulations of long term transport (circa one day) showed that convection via load-induced flow can be expected to improve this transport significantly.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3