Symmetric Sink Flow Between Parallel Plates

Author:

Murphy H. D.1,Coxon M.2,McEligot D. M.2

Affiliation:

1. Geosciences Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, N. Mex. 87545

2. Aerospace and Mechanical Engineering Department, University of Arizona, Tucson, Ariz. 85721

Abstract

Steady, laminar, incompressible flow converging radially between two stationary disks is investigated numerically as a continuously developing flow problem under the internal boundary layer approximations. At dimensionless radii much greater than one the velocity profile becomes parabolic and invariant, but at radii less than one a typical external boundary layer evolves close to the wall with an approximately uniform core region; and the boundary layer thickness decreases from one-half the disk spacing to values proportional to the local radii as the flow accelerates. At large radii the friction factor approaches the classic value obtained for fully developed flow between infinite plates, 6ν/Vt, but at small radii it approaches the constant 2.17/R0, where R0 is an overall Reynolds number based on the volumetric flow rate and the disk spacing and is independent of radius. Tabular and graphical results are provided for the intermediate range of radii, where both viscous and inertial effects are important and exact analyses are not available.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3