Vibrations of an Incompressible Linearly Elastic Plate Using Discontinuous Finite Element Basis Functions for Pressure

Author:

Yuan Lisha1,Batra Romesh C.2

Affiliation:

1. Department of Biomedical Engineering and Mechanics,M/C 0219, Virginia Polytechnic Institute and State University,Blacksburg, VA 24061e-mail: lishay@vt.edu

2. Honorary Member and Fellow,Department of Biomedical Engineering and Mechanics,M/C 0219, Virginia Polytechnic Institute and State University,Blacksburg, VA 24061e-mail: rbatra@vt.edu

Abstract

Abstract We numerically analyze, with the finite element method, free vibrations of incompressible rectangular plates under different boundary conditions with a third-order shear and normal deformable theory (TSNDT) derived by Batra. The displacements are taken as unknowns at the nodes of a 9-node quadrilateral element and the hydrostatic pressure at four interior nodes. The plate theory satisfies the incompressibility condition, and the basis functions satisfy the Babuska-Brezzi condition. Because of the singular mass matrix, Moler's QZ algorithm (also known as the generalized Schur decomposition) is used to solve the resulting eigenvalue problem. Computed results for simply supported, clamped, and clamped-free rectangular isotropic plates agree well with the corresponding analytical frequencies of simply supported plates and with those found using the commercial software, abaqus, for other edge conditions. In-plane modes of vibrations are clearly discerned from mode shapes of square plates of aspect ratio 1/8 for all three boundary conditions. The magnitude of the transverse normal strain at a point is found to equal the sum of the two axial strains implying that higher-order plate theories that assume null transverse normal strain will very likely not provide good solutions for plates made of rubberlike materials that are generally taken to be incompressible. We have also compared the presently computed through-the-thickness distributions of stresses and the hydrostatic pressure with those found using abaqus.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3