Comparison of the Flow Field of a Swirl Stabilized Premixed Burner in an Annular and a Single Burner Combustion Chamber

Author:

Fanaca D.1,Alemela P. R.1,Hirsch C.1,Sattelmayer T.1

Affiliation:

1. Lehrstuhl für Thermodynamik, TU München, 85748 Garching, Germany

Abstract

An experimental investigation of the flow field of a 12 burner annular combustor and a single burner combustor with the same burner was performed. It has revealed the aerodynamic effect, which causes the discrepancies in the flame transfer function behavior measured at the same operating conditions in the single and the annular combustion chambers. The results have shown significant differences in the flow field. In particular, it is seen that for the investigated system in the annular combustor a free swirling jet flow forms, while in the single burner configuration, a swirling wall jet flow regime exists. In this paper, we discuss the physical mechanism and show how to generalize an earlier finding, which identified a critical confinement value for a given swirler. We propose a new correlation for coswirling burners, which explains the changes found for the investigated system. It compares also well with the experimental data from other burner geometries. The correlation should allow to design single burner tests as to match the annular combustor flow regime.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of a 5-nozzle array using premix/micromix injection for hydrogen;Applications in Energy and Combustion Science;2024-06

2. Experimental and theoretical estimation of acoustic energy source terms and instability growth rates in an annular combustor;Proceedings of the Combustion Institute;2024

3. The Effects of Strong-Weak Swirling Interaction on Emissions in a Multi-Nozzle Combustor;2023-03-31

4. Strong flame interaction-induced collective dynamics of multi-element lean-premixed hydrogen flames;International Journal of Hydrogen Energy;2023-01

5. Numerical investigation on swirl flow through burner with effect of rotation;5TH INTERNATIONAL CONFERENCE ON INNOVATIVE DESIGN, ANALYSIS & DEVELOPMENT PRACTICES IN AEROSPACE & AUTOMOTIVE ENGINEERING: I-DAD’22;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3