Vibration-Enhanced Droplet Motion Modes: Simulations of Rocking, Ratcheting, Ratcheting With Breakup, and Ejection

Author:

Huber Ryan A.1,Campbell Matthew2,Doughramaji Nicole1,Derby Melanie M.3

Affiliation:

1. Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506

2. Institute for Environmental Research, Kansas State University, Manhattan, KS 66506

3. Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 e-mail:

Abstract

Power plant water usage is a coupling of the energy–water nexus; this research investigates water droplet motion, with implications for water recovery in cooling towers. Simulations of a 2.6 mm-diameter droplet motion on a hydrophobic, vertical surface were conducted in xflow using the lattice Boltzmann method (LBM). Results were compared to two experimental cases; in the first case, experimental and simulated droplets experienced 30 Hz vibrations (i.e., ±0.1 mm x-direction amplitude, ±0.2 mm y-direction amplitude) and the droplet ratcheted down the surface. In the second case, 100 Hz vibrations (i.e., ±0.8 mm x-direction amplitude, ±0.2 mm y-direction amplitude) caused droplet ejection. Simulations were then conducted for a wide range of frequencies (i.e., 10–100 Hz) and amplitudes (i.e., ±0.018–50 mm), resulting in maximum accelerations of 0.197–1970 m/s2. Under low maximum accelerations (e.g., <7 m/s2), droplets rocked upward and downward in rocking mode, but did not overcome the contact angle hysteresis and, therefore, did not move. As acceleration increased, droplets overcame the contact angle hysteresis and entered ratcheting mode. For vibrations that prompted droplet motion, droplet velocities varied between 10–1000 mm/s. At capillary numbers above approximately 0.0044 and Weber numbers above 3.6, liquid breakup was observed in ratcheting droplets (e.g., the formation of smaller child droplets from the parent droplet). It was noted that both x- and y-direction vibrations were required for droplet ejection.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3