A New Method for Measuring Thermal Contact Conductance—Experimental Technique and Results

Author:

Woodland Simon1,Crocombe Andrew D.2,Chew John W.1,Mills Stephen J.3

Affiliation:

1. Thermo-Fluid Systems University Technology Centre, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK

2. Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK

3. Department of Combustion Engineering, Rolls Royce, Derby, Derbyshire, DE24 8BJ, UK

Abstract

Thermal contact conductance (TCC) is used to characterize heat transfer across interfaces in contact. It is important in thermal modeling of turbomachinery components and finds many other applications in the aerospace, microelectronic, automotive and metal working industries. In this paper, a new method for measuring TCC is described and demonstrated. A test rig is formed from an instrumented split tube with in-line washers and loading applied under controlled conditions. The experimental method and data analysis are described, and the effects on thermal contact conductance of important parameters such as the contact pressure, surface roughness, temperature, thermal conductivity, and material strength are investigated. Normalization of the TCC measured in the experimental program was carried out using appropriate surface and material parameters. The results of this normalization are used to compare the normalized experimental results with various models from the literature.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3