Affiliation:
1. Department of Mechanical Engineering, University of California, Berkeley, Cal.
Abstract
Natural convection in a porous medium filling a slender horizontal space with an end-to-end temperature difference is studied analytically. The end-to-end temperature difference gives rise to a horizontal counterflow pattern augmenting the heat transfer rate through the porous medium. Two basic geometries are considered: horizontal layer confined between two adiabatic and impermeable parallel plates, and horizontal cylinder surrounded by an adiabatic and impermeable cylindrical surface. Nusselt number relations are derived in terms of the Rayleigh number and the cavity aspect ratio. The end-wall permeability is shown to affect the heat transfer rate through the medium.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献