Steam Injected Gas Turbine (STIG) for Load Flexible CHP: Aspects of Dynamic Behaviour, Control and Water Recovery

Author:

Lutsch Thorsten1,Gampe Uwe1,Buchheim Guntram1

Affiliation:

1. Technische Universität Dresden, Dresden, Germany

Abstract

Abstract Industrial combined heat and power (CHP) plants are often faced with highly variable demand of heat and power. Demand fluctuations up to 50% of nominal load are not uncommonly. The cost and revenue situation in the energy market represents a challenge, also for cogeneration of heat and power (CHP). More frequent and rapid load changes and a wide operating range are required for economic operation of industrial power plants. Maintaining pressure in steam network is commonly done directly by a condensation steam turbine in a combined cycle or indirectly by load changes of the gas turbine in a gas turbine and heat recovery steam generator arrangement. Both result in a change of the electric output of the plant. However, operating cost of a steam turbine are higher than a single gas turbine. The steam injected gas turbine (STIG) cycle with water recovery is a beneficial alternative. It provides an equivalent degree of freedom of power and heat generation. High process efficiency is achieved over a wide operating range. Although STIG is a proven technology, it is not yet widespread. The emphasis of this paper is placed on modeling the system behavior, process control and experiences in water recovery. A dynamic simulation model, based on OpenModelica, has been developed. It provides relevant information on system response for fluctuating steam injection and helps to optimize instrumentation and control. Considerable experience has been gained on water recovery with respect to condensate quality, optimum water treatment architecture and water recovery rate, which is also presented.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3