Reliable Temperature Measurement With Thermal History Paints: An Uncertainty Estimation Model

Author:

Peral David1,Castillo Daniel2,Araguas-Rodriguez Silvia1,Yañez-Gonzalez Alvaro1,Pilgrim Christopher1,Karagiannopoulos Solon1,Feist Jörg P.1,Skinner Stephen2

Affiliation:

1. Sensor Coating Systems Ltd., London, UK

2. Imperial College London, London, UK

Abstract

Abstract The operating temperature of turbomachinery components are increasing the drive towards higher efficiency, lower fuel consumption and reduced emissions. Accurate thermal models are required to simulate the operating temperature of gas turbine components and hence predict service life or other qualities. These models require validation through measurement. Therefore, the quality of the models and prediction are dependent on the uncertainty of the measurements used to validate them. Currently available temperature measurement techniques have limitations in the harsh operating conditions inside gas turbines. Thermocouples are widely used, however, are practically very challenging to apply on rotating components and only provide point measurements. Furthermore, over 80% of the surface must be measured to validate complex thermal models. A new technique under development called thermal history paints (THP) and coatings (THC) overcomes some of these limitations. While the uncertainty estimation model described in this work is directly related to THP, the principles can be applied in general to thermographic phosphors. The paint comprises a proprietary phosphor powder and a water-based silicate binder. The paint is applied to the surface of the test component. When the component is operated the paint records the maximum temperature of exposure across the complete surface of the component. After operation, the paint is read-out using automated instrumentation. The measurements are related to temperature through calibration to deliver a high-resolution temperature profile. An uncertainty model has been developed and described for the first time. The model assesses the uncertainty sources related to the generation of the calibration data and the measurement of the component. It has been applied to determine the uncertainty of the THP in the temperature range 400–750 °C. The estimated uncertainty in this case was, for most samples, ±3–6 °C (67% confidence level). The maximum estimated uncertainty was ±6.3 °C or ±13 °C for 67% or 95% confidence levels respectively. This is believed to be well within the uncertainty of thermal models and the requirements for temperature measurements in harsh environments on gas turbines. These results combined with the fact that the THP can record the temperature at many locations demonstrates that it is a very useful tool for the validation of thermal models and lifing predictions. The uncertainty model was validated by measuring separate test samples and comparing the temperature measured from the THP with the thermocouple data from the heat treatment. The difference was within ±7 °C and the uncertainty bounds determined by the model.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3