Stability Characteristics of an Actively Valved Resonant Pulse Combustor

Author:

Zhu Xuren1,Lisanti Joel C.1,Guiberti Thibault F.1,Roberts William L.1

Affiliation:

1. Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Abstract

Abstract Resonant pulse combustors, one of the deflagration-based pressure gain combustion devices, can significantly increase thermal efficiency in gas turbine engines. This experimental study investigates the stability characteristics of a newly designed actively valved resonant pulse combustor, capable of sustained operation and meaningful stagnation pressure gain. The resonant pulse combustor was fired with liquid gasoline fuel while ion and pressure sensors captured the temporally resolved heat release and chamber pressure. First, experimental results were used to demonstrate the general operating principle of the combustor. Then, the stability characteristics of the device were investigated through frequency domain analysis of the ion probe and pressure signal traces. A low frequency oscillation (also observed in steady flames and passively valved resonant pulse combustors), was observed as the device was brought near to its blowout limit. Finally, an index was defined to predict the stability characteristics of the resonant pulse combustor by quantifying the competition between low frequency oscillations and combustion-driven resonance. Experimental results demonstrated the ability of this index to provide early prediction of a blowout event for this device.

Funder

King Abdullah University of Science and Technology

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Operational mechanism of valved-pulsejet engines;Aerospace Science and Technology;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3