Drying of a Fully Saturated Porous Medium With Excess Water Layers: A Numerical Study

Author:

Asar Munevver Elif1,Yagoobi Jamal1

Affiliation:

1. Department of Mechanical and Materials Engineering, Center for Advanced Research in Drying, Worcester Polytechnic Institute , 100 Institute Road, Worcester, MA 01609

Abstract

Abstract Drying of moist porous media can be very energy inefficient. For example, in the pulp and paper industry, paper drying consumes more than two-thirds of the total energy used in paper machines. Novel drying technologies can decrease the energy used for drying and lessen the manufacturing processes' carbon footprint. Developing next-generation drying technologies to dry moist porous media may require an understanding of removing moisture from a fully saturated porous material with excess water. This paper provides a fundamental understanding of heat and mass transfer in a fully saturated porous medium with excess water. This is relevant, for example, in drying tissue as well as pulp or paper for the purpose of thermal insulation where pressing is preferred to be avoided to overcome the reduction in the sheet thickness. For this purpose, a theoretical drying model is developed where the porous medium corresponds to paper and is assumed to be sandwiched between two excess-water layers (bottom and top). The conjugate model consists of energy and mass conservation equations for each layer. The model is validated with corresponding experimental data. In the model, the thickness of each water layer is calculated as a function of drying time based on local temperature and total moisture content. The numerical model is transient and one-dimensional in space (i.e., in the thickness direction). This paper demonstrates the governing equations, boundary conditions, and results when the saturated porous medium with water layers is heated from one side. Moisture and temperature profiles are estimated in the thickness direction of the porous medium as it dries.

Funder

U.S. Department of Energy

Publisher

ASME International

Reference32 articles.

1. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce Its Carbon Emissions,2016

2. Drying of Paper: A Review 2000–2018;Drying Technol.,2020

3. Fundamentals, Applications and Potentials of Ultrasound-Assisted Drying;Chem. Eng. Res. Des.,2020

4. Numerical Investigation of the Effect of Ultrasound on Paper Drying;TAPPI J.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3