Predicting the Quality of One-Dimensional Periodic Micro and Nano Structures Fabricated via Wrinkling

Author:

Saha Sourabh K.1,Culpepper Martin L.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

Wrinkling of thin films due to buckling-based surface instabilities is a fast and inexpensive technique for template-free fabrication of periodic micro/nano scale structures. Although one-dimensional (1-D) periodic micro and nano structures have been fabricated via wrinkling in the past, wrinkling is not yet appropriate for a manufacturing environment. This is because it is currently not possible to predict and control the quality of the fabricated patterns. Pattern quality is quantified in terms of the uniformity of the pattern, i.e., defect density within the patterned area. Herein, we (i) identify the process parameters that affect pattern quality, (ii) model the effect of these parameters on wrinkling quality and (iii) quantify the feasible operating region for a target pattern quality. During wrinkling, dislocation defects are observed due to local geometric imperfections such as voids or variations in the material properties. We have developed a finite element model of the wrinkling process that accounts for voids in the material. The wavelength and amplitude predictions of this model were found to be within ∼13% of the experimental observations. Also, it was found that below a threshold void size, the non-uniformity in the pattern due to voids decays with an increase in the applied compressive strain. This provides a practical means to minimize the non-uniformity in 1-D wrinkled patterns by increasing the compression. However, the defect density due to surface cracks increases with an increase in the compressive strains. Our analysis enables one to identify and predict the feasible operating region within which uniform 1-D patterns can be obtained, thereby improving manufacturability via wrinkling.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3