Additive Manufacturing: Exploration of Porosity and Form Features Using Layer by Layer Deposition

Author:

Shetty Devdas1,Ly Daniel1

Affiliation:

1. University of Hartford, Hartford, CT

Abstract

Aerospace companies use high-strength metal alloys like Inconel or Titanium which could be very difficult to fabricate using conventional methods. The current manufacturing techniques result in significant waste. Additive Manufacturing (AM), in its current state is not sufficiently understood, nor characterized such that conventional design practices and process qualification methodologies can be used. In addition, AM cannot be considered for the manufacture of aircraft components unless the process is stable and controlled. The mechanical properties of fabricated parts require to be characterized to demonstrate their invariability. The laser deposition using complex geometries is a challenge. In addition, the structural performances of AM parts have to be proved. Inherent in these requirements is the need to develop a process specification which requires the monitoring and control of key raw materials, consumables, and process parameters; the development of a fixed practice for each of the AM process. Several procedures are required in order to understand how additive manufacturing works using advanced and complex design models. The ability to adopt AM to the production of components is not only predicated on the ability of AM to be competitive with conventional manufacturing methods in terms of cost, but also on its ability to deliver parts with repeatable mechanical performance. The objective of this paper is to define and characterize the limitation of various complex geometries using additive manufacturing. The experimental research involved the creation of a number of specimens using direct metal laser sintering process, examination of their form features, documenting DMLS geometry limits for the form features and finally the creation of calibration models that can be used in aerospace design manuals.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3