Affiliation:
1. Aeronautics Institute of Technology, São José dos Campos, Brazil
Abstract
In this paper we consider the flight dynamics of fighter aircraft at high angles of attack with uncertain aerodynamic coefficients. Stochastic parametric uncertainty is dealt with by employing spectral decomposition of the random variables by means of the generalized polynomial chaos expansion. We propose an optimal linear feedback strategy for the automatic pilot system to recover the aircraft from stall and provide acceptable dynamic response. Optimality of the proposed control law is proved by solving the Hamilton-Jacobi-Bellman equation and asymptotically stability of the controlled nonlinear aircraft model is guaranteed in the Lyapunov sense. Numerical results are verified with Monte-Carlo simulations.
Publisher
American Society of Mechanical Engineers
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献