FEM Simulation of Swelling Elastomer Seals in Downhole Applications

Author:

Akhtar Maaz1,Qamar Sayyad Zahid2,Pervez Tasneem2,Al-Jahwari Farooq Khalfan2

Affiliation:

1. NED University of Enineering and Technology, Karachi, Pakistan

2. Sultan Qaboos University, Muscat, Oman

Abstract

Petroleum exploration and development industry is witnessing a rapid growth in the use of swelling elastomers. They are being used in new applications aimed at enhanced oil recovery through slimming of well design, zonal isolation, water shutoff, etc. Initially developed as a problem-solving strategy (for repair of damaged or deteriorating wells), swelling elastomers are now targeting major savings in cost and time through reduction in borehole diameter, reduced casing clearance, cementless completions, etc. Due to material and geometric nonlinearity, modeling and simulation of swelling elastomer applications becomes quite complex. In this work, finite element simulation has been carried out to study swelling elastomer seal performance in downhole petroleum applications using the software ABAQUS. A hyperelastic model (that most closely resembles swelling elastomer behavior) is used for simulation of seal behavior. A series of experiments have been designed and performed to determine necessary material properties of a water-swelling elastomer as it gradually swells when exposed to saline water of two different concentrations at 50°C (to emulate field conditions of medium-depth oil wells). A large number of simulations are carried out to investigate sealing behavior against water salinity and swelling time. Sealing pressure at the contact surface between elastomer and formation (or outer casing) is studied for variations in seal length, seal thickness, compression ratio, water salinity, and swelling period. Results show that seal contact pressure increases with amount of swelling, seal length, and compression ratio; higher salinity environment results in lower sealing pressure; and more contact pressure is generated in the case of rock formation as compared to steel outer casing.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Failure Analysis and Ultimate Expansion Mechanical Behavior Analysis of Thin-Walled Solid Expandable Tubular;SPE Journal;2024-04-03

2. Numerical Investigation of Elastomer Seal Performance;Swelling Elastomers in Petroleum Drilling and Development - Applications, Performance Analysis, and Material Modeling;2021-10-27

3. Improvement of leak tightness for swellable elastomeric seals through the shape optimization;Constitutive Models for Rubber X;2017-08-15

4. Rupture of swollen styrene butadiene rubber;Polymer Testing;2017-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3