Constitutive Modeling for Flow Behavior of As-Cast 1026 Carbon Steel Under Hot Compression Experiments

Author:

Ju Li1,Li Yongtang1,Fu Jianhua1,Lei Bufang1,Qi Huiping1

Affiliation:

1. Taiyuan University of Science and Technology, Taiyuan, China

Abstract

Nowadays, modern casting theories and technologies have got marked progress in reducing steel casting’s defects, such as shrinkages, cracks, porosities, and segregations, which make it possible to manufacture industrial parts with casting instead of forging billet. Compared with the traditional technology, the new method will have many obvious advantages in reducing heating times and discharge, saving materials and energy, and improving productivity. In order to produce parts with sound mechanical properties by employing the new technology, it is important to probe the flow behavior of as-cast carbon steel under hot deformation for premium controlling processing parameters, reasonable planning procedures and a reliable constitutive equation for precise simulation. In this paper, high temperature flow behavior of as-cast 1026 carbon steel is investigated by conducting hot compression experiments on Gleeble-3500 simulator in the temperature range from 1 173 K to 1 473 K at an interval of 100 K and the stain rate range from 0.1 s−1 to 2.0 s−1. The relationships of deformation parameters (temperature, strain rate) with material’s flow behavior are found. The deformation activation energy and the stress index are worked out and the mathematical model of the flow stress under hot deformation is established by means of the liner regression analysis of true stress-strain data. Meanwhile, the effect of initial grain sizes on flow behavior of as-cast 1026 steel is also studied by compressing samples cooled to 1 173 K from 1 273 K, 1 373 K and 1 473 K respectively. The experimental results reveal that strain hardening and flow softening mainly characterize the flow behavior. It is also found that with the increase of deformation, the flow stress first increases rapidly, then reaches the peak slowly, after that it begins to decrease and finally comes to a steady value. At the temperature of 1 173 K, material’s softening is not apparent even if the strain rate is increased, while at the strain rate of 2 s−1, it is also not apparent even when the deformation temperature is raised to 1 473 K, so the final forging temperature is supposed to be about 1 173 K and the maximum stain rates should be below 2 s−1. In addition, at the same deformation temperature and strain rate, the more refined initial grain, the easier material dynamically recrystallizes and the lower the steady stress is. Therefore, the heating process of material is expected to be tightly controlled. The maximum error of flow stress between the model predictions and actual results is only 5.90%. The good agreement signifies the applicability of this method as a general constitutive equation in hot deformation studies.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3