Experimental and Numerical Study on an Inter-Turbine Duct

Author:

Zhang Xue Feng1,Hu Shuzhen1,Benner Michael1,Gostelow Paul1,Vlasic Edward2

Affiliation:

1. National Research Council Canada, Ottawa, ON, Canada

2. Pratt & Whitney Canada, Longueuil, QC, Canada

Abstract

The inter-turbine transition duct (ITD) between the high-pressure (HP) and low-pressure (LP) turbines of a gas turbine has the potential for significant length reduction and therefore engine weight reduction and/or aerodynamic performance improvement. This potential arises because very little is understood of the flow behavior in the duct in relation to the hub and casing shapes, and the flow entering the duct (e.g., swirl angle, turbulence intensity, periodic unsteadiness and blade tip vortices from upstream HP turbine blade rows). Moreover, it is unclear how well CFD is able to predict the complex flow-field in these ducts. This paper presents the results of a detailed experimental and computational study of an ITD, which is representative of a modern engine design. The experiments were conducted in a low-speed annular test rig where the effects of inlet free-stream turbulence intensities and swirl angle were investigated. Numerical studies were performed using commercial CFD software. The capability of different turbulence models, including the B-L, S-A, k-ε and SST models, have been explored. The predicted results are compared with the experimental data. Both experimental and numerical results are analyzed in detail to investigate the flow development both inside the ITD and along the end-walls.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3