Dynamic Analysis of a Dual-Mode CO2 Heat Pump With Both Hot and Cold Thermal Storage

Author:

Houbak-Jensen Lars1,Holten Anders1,Blarke Morten Boje1,Groll Eckhard A.2,Shakouri Ali2,Yazawa Kazuaki2

Affiliation:

1. Aalborg University, Aalborg, Denmark

2. Purdue University, West Lafayette, IN

Abstract

We investigated the dynamics of a transcritical CO2 heat pump system including hot and cold thermal storages, which makes up the concept “thermal battery”. The analytical model is used for the study of the dynamics of the system involving simultaneous supply of heating and cooling for buildings. The model includes the dynamics of the gas cooler, evaporator and the thermal storages, while the compressor and the expansion valve are considered quasi-static. The heat transfer in the dynamically modeled components is described by partial differential equations (PDEs) consisting of heat conduction, convection, and source terms. Each component is divided into a number of volumes adjusted according to the required precision and reasonable computational time. We applied two discretization schemes in order to find a numerical solution to the PDEs. The spatial discretization for the heat exchangers is performed by using the upwind scheme, where the fluid properties are individually calculated within each volume. Due to the discrete events in form of tapping and loading (or charging and discharging) of the heat storages, the discretization approach takes into account the sharp spatial transitions within the thermal storages. Therefore, the method of lines in combination with the Superbee slope-limiter was applied for the spatial discretization for high resolution calculation. The modeling approach results in a set of algebraic and ordinary differential equations (ODEs), hence the model becomes an algebraic differential equation problem, which we solved by using MATLAB solver ODE15s. This extended model was used to simulate a dynamic response of the case with varying heating and cooling consumption over a period of 24 hours in a building. The heating and cooling energy consumption follow a sinusoidal and continuous pattern. The results include the effect on both the outlet temperatures and the system coefficient-of-performance (COP). The outlet energy from the hot storage and the cold storage is used for heating tap water and a chilled water space cooling application subject to temperature requirements. Dimensioning of both storages is crucial for obtaining the required temperatures. The model identifies the critical storage levels required to satisfy the periodic but out-of-phase combination of heating and cooling demands. The volume of the cold storage will have to be considerably larger than the hot storage due to the lower temperature difference.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Simulation of a Cryogenic Plant for the Cooling of Mashed Grapes;New Technologies, Development and Application IV;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3