Continuous-Scan Phased Array Measurement Methods for Turbofan Engine Acoustic Testing

Author:

Shah Parthiv N.1,White Andrew1,Hensley Dan2,Papamoschou Dimitri3,Vold Håvard4

Affiliation:

1. ATA Engineering, Inc., San Diego, CA 92128

2. ATA Engineering, Inc., Lakewood, CO 80401

3. The Henry Samueli School of Engineering, Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92697

4. Vold, LLC, Charleston, SC 29412

Abstract

Imaging of aeroacoustic noise sources is routinely accomplished with geometrically fixed phased arrays of microphones. Several decades of research have gone into improvement and optimization of sensor layouts, selection of basis models, and deconvolution algorithms to produce sharper and more localized images of sound-producing regions in space. This paper explores an extension to conventional phased array measurements that uses slowly, continuously moving microphone arrays with and without coupling to rigid fixed arrays to improve image quality and better describe noise mechanisms on turbofan engine sources such as jet exhausts and turbomachinery components. Three approaches are compared in the paper: fixed receiver beamforming (FRBF), continuous-scan beamforming (CSBF), and multireference CSBF (MRCSBF). The third takes advantage of transfer function matrices formed between fixed and moving sensors to achieve effective virtual arrays with spatial density one to two orders of magnitude higher, with practical sensor budgets and scan speeds. The MRCSBF technique produces array sidelobe rejection that approaches the theoretical array pattern of a continuous two-dimensional (2D) aperture. The implications of this finding are that better source localization may be achieved with conventional delay and sum (DAS) beamforming (BF) with practical sensor budgets, and that an improved starting image of the sound source can be provided to deconvolution algorithms. These findings are demonstrated on analytical and experimental examples from a low-cost rotating phased array using point sound sources, as well as linear scanning array experiments of an impinging jets point source and a near-sonic jet nozzle exhaust.

Funder

Glenn Research Center

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3