Affiliation:
1. e-mail address:
2. Faculty of Aerospace Engineering, Technion, Haifa 32000, Israel
Abstract
Dynamic steady-state spherical cavitation fields are examined with emphasis on material porosity at large strain. Cavity expansion is driven by constant internal pressure in presence of remote tension or compression. The plastic branch of constitutive relations is described by the Gurson model, with arbitrary strain hardening. The mathematical model is reduced to a system of four ordinary nonlinear coupled differential equations. Numerical examples show that a plastic shock wave builds up as expansion velocity approaches a critical value and jump conditions across the shock are accounted for. At critical levels of remote tension, quasi-static cavitation of all internal voids is induced before dynamic cavity expansion occurs.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献