Optimization of the Nodalization of Nuclear System Thermal-Hydraulic Code Applied on Primary Loop Benchmark

Author:

Xu Hong1,Badea Aurelian Florin1,Cheng Xu1

Affiliation:

1. Institute for Applied Thermofluidics (IATF), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, Karlsruhe 76131, Germany

Abstract

Abstract In best estimate plus uncertainty approach for thermal-hydraulic simulation in nuclear engineering, a crucial step for the qualification of the scenario simulation is the discretization, i.e., the nodalization of nuclear power plants and related integral test facilities (ITFs). Since intermediate break loss-of-coolant accident (IBLOCA) simulation is getting more and more attention in this decade, we focused on the nodalization of an IBLOCA scenario—a primary loop (PKL) I2.2 benchmark delivered by the organization for economic cooperation and development PKL4-project—using the analyses of thermal-hydraulics for leaks and transients (ATHLET) code. This work followed mainly the nodalization methodology of Petruzzi and D'Auria, including both qualitative and quantitative criteria, being divided into three phases for component volume, steady-state, and transient, respectively. The authors used also some specific approaches: (1) for component volume qualification, a volume fractional parameter was introduced, considering not only the relative error of each component but also the volume fraction in the whole system (an 0.2% acceptability level was chosen for this parameter); (2) the experimental data were not used directly as a reference within the nodalization procedure but the calculated results delivered by the most refined nodalization. Based on the estimator of average amplitude in the fast Fourier transform-based method (FFTBM), the convergence, rationality, and an optimized result of nodalization in the simulation of an actual IBLOCA transient benchmark have been judged. After three phases of nodalization qualification, it has been proved that the final nodalization has the necessary degree of convergence for a good reproduction of the benchmark geometry, allowing the proper simulation of involved phenomena. Finally, a middle-refined nodalization was found as being optimal, fulfilling the convergence criteria with a reasonable central processing unit time consumption. The nodalization scheme in this work was not seen as being the single factor influencing the simulated results, but just as a prerequisite to allow further reliable improvements on the models used by ATHLET (aspects not referred to in this particular study). Therefore, the simulated results presented here will match the experimental ones only as general trends; improvements may be further achieved by using new and more precise models (e.g., for critical mass flow, heat transfer, countercurrent flow, etc.) in the system thermal-hydraulic code.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference50 articles.

1. Development of the Qualified Plant Nodalization for Safety and Operational Transient Analysis,1998

2. Thermal-Hydraulic System Codes in Nuclear Reactor Safety and Qualification Procedures;Sci. Technol. Nucl. Installat.,2008

3. A Historical Perspective of Nuclear Thermal-Hydraulics,2017

4. Development and Assessment of the Appendix K Version of RELAP5-3D for LOCA Licensing Analysis;Nucl. Technol.,2002

5. Best-Estimate Plus Uncertainty (BEPU) Approach for Accident Analysis,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3