Channel-Confined Wake Structure Interactions Between Two Permeable Side-by-Side Bars of a Square Cross-Section

Author:

Jamshed Saqib1,Dhiman Amit1

Affiliation:

1. Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India

Abstract

Abstract The current research focuses on the laminar flow through permeable side-by-side bars of a square cross section in a channel-confined domain. Vorticity generation on the leeward sides of the permeable bodies further necessitates the study for a better understanding of underlying physics. Reynolds number (Re) and Darcy number (Da) are varied from 5 to 150 and 10−6 to 10−2, respectively, at transverse gap ratios s/d = 2.5–10. In the perspective of periodic unsteady flow, critical Re for the onset of vortex shedding is analyzed. Streamlines, vorticity, pressure coefficient distribution, and velocity profiles are discussed to identify the wake patterns. In lower permeability level, vortex-shedding from the permeable square cylinders is observed either in synchronized antiphase mode or a single large vortex street with a synchronized in-phase pattern in the near wake. A steady-state wake pattern symmetric and flocked toward the centerline is observed for all s/d at a higher permeability level regardless of Re. Wake patterns are not altered for Da = 10−6 to 10−3; instead, prompt extermination of the two vortex streets downstream is observed at Da = 10−3 as compared to Da = 10−6. The impact of s/d, Re, and permeability on the drag is examined. A jump in the flow characteristics and drag forces is noticed at higher Re for the midrange Da remarkably at lower s/d. For the extent of high permeability, the drag coefficient asymptotically gets closer to zero.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3