Influence of Piezoelectric Energy Transfer on the Interwell Oscillations of Multistable Vibration Energy Harvesters

Author:

Kumar Aravind1,Ali Shaikh Faruque1,Arockiarajan A.1

Affiliation:

1. Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India e-mail:

Abstract

This manuscript investigates the effect of nonconservative electromechanical energy transfer on the onset of interwell motions in multistable piezoelectric energy harvesters. Multistable piezoelectric energy harvesters have been proven to outperform their linear counterparts when they undergo interwell oscillations. The conditions for interwell oscillations in such harvesters are generally characterized in terms of their potential energy function. This is accurate for a stand-alone mechanical oscillator but when the piezoelectric patches and a load resistance are included, a part of the kinetic energy supplied to the system is converted into electrical energy. In this manuscript, the Melnikov necessary conditions for interwell oscillations are derived, considering the effect of this nonconservative piezoelectric energy transfer. Through Melnikov theoretic analysis, it is shown that in a tristable harvester with all the three potential wells having the same depth, a higher excitation level is required to enable exits from the middle well to the outer wells when compared to the exits from the outer wells to the middle well. This is in stark contrast to a stand-alone tristable mechanical oscillator wherein interwell motions are simultaneously enabled for all the wells having the same depth.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3