Optimal Design of a Rotating Disk for Kinetic Energy Storage

Author:

Berger M.1,Porat I.1

Affiliation:

1. Technion–Israel Institute of Technology, Haifa, ISRAEL

Abstract

A thin homogeneous rotating disk of variable thickness is considered for the purpose of storing kinetic energy. The objective of the design is to find the optimal shape of the disk for which, in the presence of constraints on the geometry and strength of the disk, the Specific Kinetic Energy (SKE) is maximal. An upper bound for the SKE of a finite diameter disk is derived and a discrete formulation is presented by which an approximate optimal profile for arbitrary design parameters and rotational speeds can be obtained numerically. Applying a parametric study in which optimal designs for a sequence of rotational speeds are observed, a general configuration of the exact optimal profile is presented. The parametric study reveals the existence of three speed intervals, each characterized by a common type of optimal design. The optimal SKE corresponding to the ultimate rotational speed reaches a value very close to the theoretical upper bound, namely twice that of a thin ring. The model gives insight into the nature of optimal designs and serves as a simple and rapid computational tool for finding the optimal profile for arbitrary disk parameters and rotational speeds.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fatigue Analysis of a Steel Energy Storage Flywheel Rotor Under Variable Loading Condition;2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM);2022-12-01

2. On determining the optimal shape, speed, and size of metal flywheel rotors with maximum kinetic energy;Structural and Multidisciplinary Optimization;2021-05-25

3. Rotor Design and Optimization of Metal Flywheels;Reference Module in Earth Systems and Environmental Sciences;2021

4. Optimal shape synthesis of a metallic flywheel using non-dominated sorting Jaya algorithm;Soft Computing;2019-08-26

5. Shape Optimization of the Flywheel Using the Cubic B Spline Curve;Lecture Notes in Mechanical Engineering;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3