Analytical and Experimental Study of Beam Torsional Stiffness With Large Axial Elongation

Author:

Degener M.1,Hodges D. H.2,Petersen D.3

Affiliation:

1. Institute for Aeroelasticity, German Aerospace Research Establishment (DFVLR), Go¨ttingen, West Germany

2. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia

3. Institute for Structural Mechanics, German Aerospace Research Establishment (DFVLR), Braunschweig, West Germany

Abstract

The axial force and effective torsional stiffness versus axial elongation are investigated analytically and experimentally for a beam of circular cross section and made of an incompressible material that can sustain large elastic deformation. An approach based on a strain energy function identical to that used in linear elasticity, except with its strain components replaced by those of some finite-deformation tensor, would be expected to provide only limited predictive capability for this large-strain problem. Indeed, such an approach based on Green strain components (commonly referred to as the geometrically nonlinear theory of elasticity) incorrectly predicts a change in volume and predicts the wrong trend regarding the experimentally determined axial force and effective torsional stiffness. On the other hand, use of the same strain energy function, only with the Hencky logarithmic strain components, correctly predicts constant volume and provides excellent agreement with experimental data for lateral contraction, tensile force, and torsional stiffness—even when the axial elongation is large. For strain measures other than Hencky, the strain energy function must be modified to consistently account for large strains. For comparison, theoretical curves derived from a modified Green strain energy function are added. This approach provides results identical to those of the Neo-Hookean formulation for incompressible materials yielding fair agreement with the experimental results for coupled tension and torsion. An alternative approach, proposed in the present paper and based on a modified Almansi strain energy function, provides very good agreement with experimental data and is somewhat easier to manage than the Hencky strain energy approach.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear Variational Asymptotic Sectional Analysis of Hyperelastic Beams;AIAA Journal;2016-02

2. Analytical Modeling of Trapeze and Poynting Effects of Initially Twisted Beams;Journal of Applied Mechanics;2015-06-01

3. Flexible joints in structural and multibody dynamics;Mechanical Sciences;2013-02-13

4. Flexible Multibody Dynamics;Solid Mechanics and Its Applications;2011

5. Tensorial Deformation Measures for Flexible Joints;Journal of Computational and Nonlinear Dynamics;2010-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3