Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics

Author:

Ma Qiang1,Zhang Yihui2

Affiliation:

1. Department of Engineering Mechanics, Center for Mechanics and Materials, AML, Tsinghua University, Beijing 100084, China

2. Department of Engineering Mechanics, Center for Mechanics and Materials, AML, Tsinghua University, Beijing 100084, China e-mail:

Abstract

Fractal-inspired designs represent an emerging class of strategy for stretchable electronics, which have been demonstrated to be particularly useful for various applications, such as stretchable batteries and biointegrated electrophysiological electrodes. The fractal-inspired constructs usually undergo complicated, nonlinear deformations under mechanical loading, because of the highly complex and diverse microstructures inherent in high-order fractal patterns. The underlying relations between the nonlinear mechanical responses and microstructure geometry are essential in practical applications, which require a relevant mechanics theory to serve as the basis of a design approach. Here, a theoretical model inspired by the mechanism of ordered unraveling is developed to study the nonlinear stress–strain curves and elastic stretchability for a class of fractal-inspired horseshoe microstructures. Analytic solutions were obtained for some key mechanical quantities, such as the elastic modulus and the tangent modulus at the beginning of each deformation stage. Both the finite-element analyses (FEA) and experiments were carried out to validate the model. Systematic analyses of the microstructure–property relationship dictate how to leverage the various geometric parameters to tune the multistage, J-shaped stress–strain curves. Moreover, a demonstrative example shows the utility of the theoretical model in design optimization of fractal-inspired microstructures used as electrophysiological electrodes, aiming to achieve maximum elastic stretchability for prescribed filling ratios. The results indicate a substantial enhancement (e.g., >4 times) of elastic stretchability by using fractal designs, as compared to traditional horseshoe designs. This study can serve as design guidelines of fractal-inspired microstructures in different stretchable electronic systems.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3