Infrared Radiation Statistics of Nonluminous Turbulent Diffusion Flames

Author:

Kounalakis M. E.1,Sivathanu Y. R.1,Faeth G. M.1

Affiliation:

1. Department of Aerospace Engineering, The University of Michigan, Ann Arbor, Ml 48109-2140

Abstract

Mixture fraction and radiation statistics were studied for radiation paths through turbulent carbon monoxide/hydrogen diffusion flames burning in still air. Measurements included Mie scattering for mixture fraction statistics and fast-response infrared spectroscopy for radiation statistics. Measured mixture fraction statistics also were used to predict radiation statistics based on stochastic time series methods, the laminar flamelet approximation, and a narrow-band radiation model. Measured intensities of radiation fluctuations were in the range 10–40 percent, which causes mean radiation levels to be 1.1–4.2 times larger than estimates based on mean scalar properties in the flames. In contrast, stochastic predictions of mean and fluctuating radiation properties were generally in excellent agreement with measurements. An exception was the temporal integral scales of radiation fluctuations, where differential diffusion errors of the Mie scattering measurements were identified as the source of the discrepancies.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3