Extended Divide-and-Conquer Algorithm for Uncertainty Analysis of Multibody Systems in Polynomial Chaos Expansion Framework

Author:

Poursina Mohammad1

Affiliation:

1. Assistant Professor Mem. ASME Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721 e-mail:

Abstract

In this paper, an advanced algorithm is presented to efficiently form and solve the equations of motion of multibody problems involving uncertainty in the system parameters and/or excitations. Uncertainty is introduced to the system through the application of polynomial chaos expansion (PCE). In this scheme, states of the system, nondeterministic parameters, and constraint loads are projected onto the space of specific orthogonal base functions through modal values. Computational complexity of traditional methods of forming and solving the resulting governing equations drastically grows as a cubic function of the size of the nondeterministic system which is significantly larger than the original deterministic multibody problem. In this paper, the divide-and-conquer algorithm (DCA) will be extended to form and solve the nondeterministic governing equations of motion avoiding the construction of the mass and Jacobian matrices of the entire system. In this strategy, stochastic governing equations of motion of each individual body as well as those associated with kinematic constraints at connecting joints are developed in terms of base functions and modal terms. Then using the divide-and-conquer scheme, the entire system is swept in the assembly and disassembly passes to recursively form and solve nondeterministic equations of motion for modal values of spatial accelerations and constraint loads. In serial and parallel implementations, computational complexity of the method is expected to, respectively, increase as a linear and logarithmic function of the size.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference44 articles.

1. Strategies for Articulated Multibody-Based Adaptive Coarse Grain Simulation of RNA;Methods Enzymol.,2011

2. Recursive Derivation of Explicit Equations of Motion for Efficient Dynamic/Control Simulation of Large Multibody Systems,1990

3. Recursive Solution to the Equations of Motion of an n-Link Manipulator;Fifth World Congress on the Theory of Machines and Mechanisms,1979

4. A Recursive Formation for Constrained Mechanical System Dynamics: Part I, Open Loop Systems;Mech. Struct. Mach.,1987

5. Brandl, H., Johanni, R., and Otter, M., 1986, “A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix,” IFAC/IFIP/IMACS Symposium, pp. 95–100.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3