Affiliation:
1. Cummins, Inc.
2. University of Cincinnati
Abstract
Heat transfer between two immiscible fluids in a direct contact heat exchanger can be enhanced by the application of an electric field. In this paper, we have numerically modeled heat transfer to a spherical droplet translating in an immiscible medium with an applied electric field. The electric field induces circulatory motion inside and outside the droplet that results in increase in the rate of heat transport. The governing equations for both phases are solved simultaneously by a finite volume method. The external heat transfer problem is considered where the bulk of the resistance is assumed to be in the continuous phase. Effects of electric field strength and translational Reynolds number are investigated.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献