Modelling Processing of Unfilled and Long-Glass Fibre Reinforced Thermoplastics in a Screw-Barrel Unit

Author:

Moguedet M.1,Balcaen J.1,Be´reaux Y.1,Charmeau J.-Y.1

Affiliation:

1. INSA de Lyon

Abstract

In injection moulding, long glass fibre reinforced thermoplastics (LGFT) are an attractive way to produce large parts at low cost. The strength of the part depends chiefly on the average fibre length, fibres which are subjected to considerable attrition during processing in conventional three stage screws. First of all, in this study we have coupled a melting analysis in a conventional screw to a model of fibre breakage whereby a fibre anchored at one end in the solid bed is submitted, at its other end, to the intense shear stress of the molten polymer flowing in the film close to the barrel. As the melting of the solid bed progresses, more fibres are unlayered and submitted to bending which intensity is depending on both the fibre length and orientation. When the bending is too high, the fibre breaks. Bimodal fibre length distribution are obtained and compared to existing data. The sensibility of the model to main processing parameters such as screw rotation, initial fibre length, viscosity, barrel temperature and screw geometry are also investigated. Next, we present a new analytical solution for flow of a viscous fluid in a single screw channel that takes into account the torsion and curvature of the channel. Contrary to common knowledge in polymer processing based on the Parallel Plate Model, we found that, in the case of cross-sections with large aspect ratio, torsion effects can be significant. The implication of the model on velocity field, residence time and mixing efficiency is investigated and compared to the predictions of the classical Parallel Plate Model, to finite elements calculations, and to 3D experimental measurements. Indeed, an innovating device has been developed in our laboratory to visualize the flow of a viscous fluid in the channel of a screw. It consists of a transparent barrel and of a rotating screw, pumping a transparent viscous fluid at room temperature. A particle plunged in the flow is constantly monitored by four video-cameras placed around the barrel and recording its position in a frame. The 3D path lines are then computed.

Publisher

ASMEDC

Reference32 articles.

1. Kelly A. & TysonW. R., Mech. Phys. Solids, 13, 329329 (1965).

2. Mittal R. K. , GuptaV. B. & SharmaP. K., Comp. Sci. Tech, 31, 295–313, (1988)

3. Z. Tadmor & C. Gogos, “Principles of polymer processing,” Wiley Interscience Editions, 1979

4. Forgacs O. & MasonS., J. Colloid Sci., 14, 457457 (1959)

5. Salinas A. & PittmanJ., Polym. Eng. Sci., 21, 2323 (1981)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3