Microstructural Characterization of Ti-6Al-4V Subjected to Fretting

Author:

Swalla Dana R.1,Neu Richard W.1,McDowell David L.1

Affiliation:

1. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

Abstract

This study is focused on characterization of microstructural changes linked to deformation and crack formation mechanisms in duplex Ti-6Al-4V specimens used in displacement controlled fretting-only experiments. In particular, the effect of slip displacement amplitude and number of fretting cycles on the evolution of grain morphology, grain orientation, misorientation distribution, composition, and microhardness is investigated using electron backscatter diffraction (EBSD), energy dispersive X-ray analysis (EDX), and nanoindentation. A strong basal microtexture and significant oxygen diffusion were observed in the Ti-6Al-4V specimen that exhibited the most significant cracking. A critical slip amplitude threshold may exist for which a combination of mechanisms, such as plastic deformation, grain reorientation, and oxygen diffusion, occur during fretting that make conditions ideal for crack formation. The results provide insights for development and validation of computational crystal plasticity models with application to fretting and sliding contact problems. New fretting damage-assessment measures have also been identified and have application for components that suffer from fretting wear and/or fatigue related failures.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3