Computational and Experimental Study of the Unsteady Convection of Entropy Waves Within a High-Pressure Turbine Stage

Author:

Pinelli Lorenzo1,Marconcini Michele1,Pacciani Roberto1,Gaetani Paolo2,Persico Giacomo2

Affiliation:

1. Department of Industrial Engineering, Università degli Studi di Firenze, Via S. Marta 3, 50139 Firenze, Italy

2. Energy Department, Politecnico di Milano, Via Lambruschini 4, 20158 Milano, Italy

Abstract

Abstract This article describes the transport and the interaction of pulsating entropy waves generated by combustor burners within a high-pressure turbine stage for aeronautical application. Experiments and computational fluid dynamics (CFD) simulations were carried out in the context of the European Research Project RECORD. Experimental campaigns considering burner-representative temperature fluctuations (in terms of spot shape, fluctuation frequency, and total temperature variation percentage) injected upstream of an un-cooled high-pressure gas turbine stage have been performed in the high-speed closed-loop test rig of the Fluid Machine Laboratory (LFM) of the Politecnico di Milano (Italy). The pulsating entropy waves are injected at the stage inlet in streamwise direction at four different azimuthal positions featuring a 7% overtemperature with respect to the main flow with a frequency of 90 Hz. Detailed time-resolved temperature measurements (in the range of 0–200 Hz) upstream and downstream of the stage, as well as in the stator–rotor axial gap, were performed. Time-accurate CFD simulations with and without entropy fluctuations imposed at the stage inlet were performed with the TRAF code, developed by the Università degli Studi di Firenze (Italy). A numerical postprocessing procedure, based on the discrete Fourier transform (DFT) of the conservative variables, has been implemented to extract the low-frequency content connected to the entropy fluctuations. Measurements highlighted a significant attenuation of the entropy wave spot throughout their transport within the stator channel and their interaction with the rotor blade rows, highly depending on their injection azimuthal position. Simulations show an overall good agreement with the experiments on the measurement traverses, especially at the stage outlet. By exploiting the combination of experiments and simulations, the aerodynamic and thermal implications of the temperature fluctuation injected upstream of the stage were properly assessed, thus allowing suggest useful information to the designer. The comparison with the experiments confirms the accuracy of the CFD method to solve the periodic, but characterized by a low-frequency content event, associated with the entropy wave fluctuation.

Funder

European Commission

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3