Master Curves for Poroelastic Spherical Indentation With Step Displacement Loading

Author:

Liu Ming11,Huang Haiying1

Affiliation:

1. Georgia Institute of Technology School of Civil and Environmental Engineering, , Atlanta, GA 30332

Abstract

Abstract Theoretical and numerical analyses are conducted to rigorously construct master curves that can be used for interpretation of displacement-controlled poroelastic spherical indentation test. A fully coupled poroelastic solution is first derived within the framework of Biot’s theory using the McNamee–Gibson displacement function method. The fully saturated porous medium is assumed to consist of slightly compressible solid and fluid phases and the surface is assumed to be impermeable over the contact area and permeable everywhere else. In contrast to the cases in our previous studies with an either fully permeable or impermeable surface, the mixed drainage condition yields two coupled sets of dual integral equations instead of one in the Laplace transform domain. The theoretical solutions show that for this class of poroelastic spherical indentation problems, relaxation of the normalized indentation force is affected by material properties through weak dependence on a single-derived material constant only. Finite element analysis is then performed in order to examine the differences between the theoretical solution, obtained by imposing the normal displacement over the contact area, and the numerical results where frictionless contact between a rigid sphere and the poroelastic medium is explicitly modeled. A four-parameter elementary function, an approximation of the theoretical solution with its validity supported by the numerical analysis, is proposed as the master curve that can be conveniently used to aid the interpretation of the poroelastic spherical indentation test. Application of the master curve for the ramp-hold loading scenario is also discussed.

Funder

Office of Science

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3