Performance Evaluation of an Evacuated Flat-Plate Collector System for Domestic Hot Water Applications

Author:

Saeed Hamza1,Mahmood Mariam1,Nazir Hassan1,Waqas Adeel1,Ahmad Naveed1,Ali Majid1,Haseeb Abdul1,Sajid Muhammad Bilal1

Affiliation:

1. National University of Sciences and Technology US-Pakistan Centre for Advanced, Studies in Energy, , Islamabad 44000 , Pakistan

Abstract

AbstractRapid population growth and increasing energy demand in developing countries are the key drivers behind rising concerns such as energy poverty and environmental degradation. Harnessing solar energy can help the developing countries inch closer to sustainable economic growth. This article presents the performance analysis of a solar water heating system based on an evacuated flat-plate collector (EFPC). EFPCs offer higher optical performance and lower thermal losses in comparison with conventional solar collectors. In this study, a multiparametric analysis provides the guidelines for the design and optimization of a novel low vacuum EFPC system under ambient conditions, for domestic hot water (DHW) applications. A small-scale solar thermal collector system based on a low vacuum (17.5–20 kPa) EFPC of a total area of 4.0 m2 is designed and installed. The system is coupled with a storage tank composed of the helical copper coil configuration inside the tank, which is used as a heat exchanger from a primary loop to a secondary loop. A series of real-time experiments are performed under ambient conditions from December to April. The thermal efficiency of the EFPCs reaches a maximum value of 73.2%, with the glycol–water mixture as a heat transfer fluid at an inlet temperature of 31.2 °C, when the ambient temperature is 15.3 °C, average irradiance is 679.2 Wm−2, and vacuum pressure is 20 kPa. For this duration, the exergy efficiency reaches a peak value of 16%. This EFPC system provides 100 liters of hot water at 57–69 °C per day for DHW consumption when the average ambient temperature is 24 °C. The overall results highlight the potential of EFPCs for hot water applications. Furthermore, an efficiently optimized EFPC system can also be used for space heating during the winter season.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference31 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3