Numerical Study of Mixed Convection Flow in an Impinging Jet CVD Reactor for Atmospheric Pressure Deposition of Thin Films

Author:

Vanka S. P.1,Luo Gang1,Glumac Nick G.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801

Abstract

A systematic numerical study has been conducted of the mixed convection flow in a novel impinging jet chemical vapor deposition (CVD) reactor for deposition of thin films at atmospheric pressure. The geometry resembles that of a pancake reactor but the inflow gases enter through a small nozzle to provide high inlet momentum. A finite-volume-based computational procedure is used to integrate the governing flow, energy, and scalar transport equations with high accuracy. The effects of the temperature dependent properties are fully accounted for. The effects of operating pressure, wafer rotation rate, and inlet flow rate of the carrier gas are investigated. The main benefit of the new geometry is the suppression of the buoyancy-driven flow even at atmospheric pressures due to the lower mixed convection parameter. We show that the new geometry can produce thin films of high radial uniformity and also with high growth rate. Comparisons are also made with a conventional stagnation flow reactor for which it is shown that beyond a moderate pressure (∼0.1 atm), the flow is dominated by natural convection, and the reactor is unsuitable for practical use.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3